If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 32x + -47 = 0 Reorder the terms: -47 + 32x + 3x2 = 0 Solving -47 + 32x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -15.66666667 + 10.66666667x + x2 = 0 Move the constant term to the right: Add '15.66666667' to each side of the equation. -15.66666667 + 10.66666667x + 15.66666667 + x2 = 0 + 15.66666667 Reorder the terms: -15.66666667 + 15.66666667 + 10.66666667x + x2 = 0 + 15.66666667 Combine like terms: -15.66666667 + 15.66666667 = 0.00000000 0.00000000 + 10.66666667x + x2 = 0 + 15.66666667 10.66666667x + x2 = 0 + 15.66666667 Combine like terms: 0 + 15.66666667 = 15.66666667 10.66666667x + x2 = 15.66666667 The x term is 10.66666667x. Take half its coefficient (5.333333335). Square it (28.44444446) and add it to both sides. Add '28.44444446' to each side of the equation. 10.66666667x + 28.44444446 + x2 = 15.66666667 + 28.44444446 Reorder the terms: 28.44444446 + 10.66666667x + x2 = 15.66666667 + 28.44444446 Combine like terms: 15.66666667 + 28.44444446 = 44.11111113 28.44444446 + 10.66666667x + x2 = 44.11111113 Factor a perfect square on the left side: (x + 5.333333335)(x + 5.333333335) = 44.11111113 Calculate the square root of the right side: 6.641619616 Break this problem into two subproblems by setting (x + 5.333333335) equal to 6.641619616 and -6.641619616.Subproblem 1
x + 5.333333335 = 6.641619616 Simplifying x + 5.333333335 = 6.641619616 Reorder the terms: 5.333333335 + x = 6.641619616 Solving 5.333333335 + x = 6.641619616 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.333333335' to each side of the equation. 5.333333335 + -5.333333335 + x = 6.641619616 + -5.333333335 Combine like terms: 5.333333335 + -5.333333335 = 0.000000000 0.000000000 + x = 6.641619616 + -5.333333335 x = 6.641619616 + -5.333333335 Combine like terms: 6.641619616 + -5.333333335 = 1.308286281 x = 1.308286281 Simplifying x = 1.308286281Subproblem 2
x + 5.333333335 = -6.641619616 Simplifying x + 5.333333335 = -6.641619616 Reorder the terms: 5.333333335 + x = -6.641619616 Solving 5.333333335 + x = -6.641619616 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.333333335' to each side of the equation. 5.333333335 + -5.333333335 + x = -6.641619616 + -5.333333335 Combine like terms: 5.333333335 + -5.333333335 = 0.000000000 0.000000000 + x = -6.641619616 + -5.333333335 x = -6.641619616 + -5.333333335 Combine like terms: -6.641619616 + -5.333333335 = -11.974952951 x = -11.974952951 Simplifying x = -11.974952951Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.308286281, -11.974952951}
| -1/8*50/3= | | 168=x+(x*.10) | | N=2(1+0.5)+2(1+1.5) | | 38x+15y=30 | | -1/8*50/3 | | =100+.9(Y-500)+.04(10000)+.08(15000)+.8(100)+(-100)(2) | | 0.9y=-117 | | 168=x+(.10x) | | 10x+13y+15z+5.5x-6y-10.5z= | | 7x+5x-9+2x-3x-6= | | x+0.30x=153 | | x+(0.70x+0.30x)=153 | | x+0.70x+0.30x=153 | | -2*-2+2=y | | 2/3x-12=24 | | 10x+8-6x-4= | | 7z=28/23 | | 4x+5=2x-19e | | 4x+5=-2x-19e | | 2(p-3)+3(p+4)=46 | | 12a+18b=30ab | | 3(w+8)-5w=18 | | 3(w+8)-w=18 | | 5r=5/6 | | 375=150+60h | | 4w^2+7w=3 | | Pr^/2q=1 | | 2m-6=4m+10 | | log(5x+8)=6 | | 90x+50=70x+90 | | x^3/X^2-36 | | 1+2tanx=-5tanx |